

Altered epigenetic age acceleration associated with cognitive aging : A longitudinal pilot study

Jongmin Park¹, Chang Won Won²

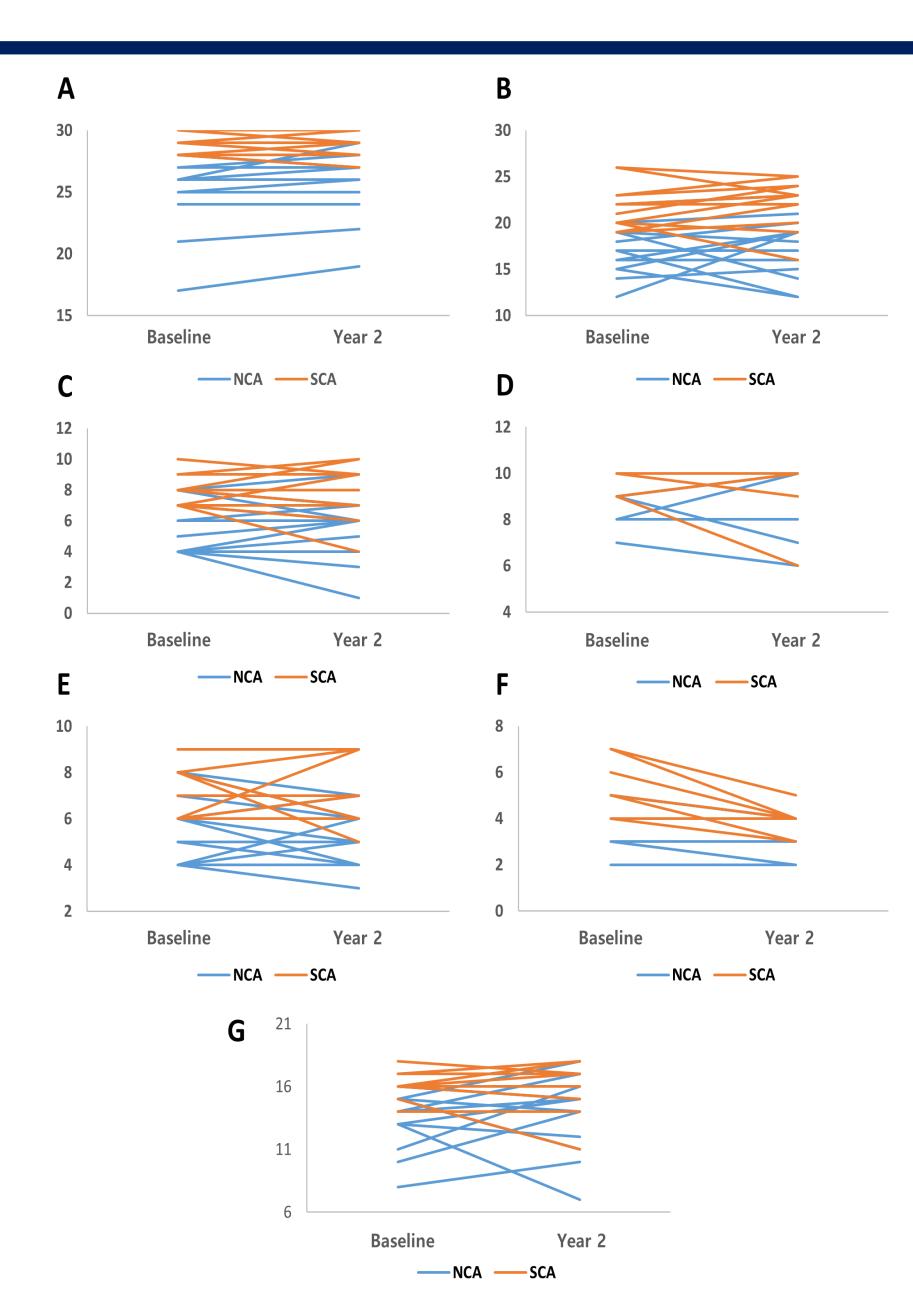
¹College of Nursing, Research Institute of Nursing Science, Pusan National University, ²Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University

Introduction

Epigenetic age acceleration (EAA) has emerged as a promising biomarker of aging-related conditions. This longitudinal pilot study aimed to identify a biomarker for cognitive aging by examining the EAA differences between successful cognitive aging (SCA) and normal cognitive aging (NCA) among Korean community-dwelling older adults.

METHODS

We classified participants into two groups: SCA (above the 50th percentile in all domains of cognitive function, n = 13) and NCA (n = 13). Universal epigenetic age acceleration, intrinsic epigenetic age acceleration (IEAA), extrinsic epigenetic age acceleration (EEAA), and cognitive functions were measured at baseline and after two years. Man-Whitney U test and partial correlation tests were used to analyze cognitive functions and EAA.


RESULTS

The trajectories at baseline and after two years showed that 85% of participants of the SCA group has been changed to the NCA group after two years. There was a significant mean difference between SCA and NCA groups in EEAA (Z = -2.128, p = .034). EEAA was also negatively correlated with digit span backward test after controlling number of comorbidities (r = -0.52, p = .030).

Table 1. Descriptive summary of successful and normal cognitive aging and their trajectories at baseline and after two years

Variables	Categories	Baseline (n = 26)	Year 2 (n = 26)		
SCA		13 (50.0%)	3 (11.5%)		
NCA		13 (50.0%)	23 (88.5%)		
Trajectories	$SCA \rightarrow SCA$	2 (7.7	7%)		
	$SCA \rightarrow NCA$	11 (42	.3%)		
	$NCA \rightarrow SCA$	1 (3.8%) 12 (46.2%)			
	$NCA \rightarrow NCA$				

Note: SCA, successful cognitive aging; NCA, normal cognitive aging; MCI, mild cognitive impairment

Figure 1. Individual neuropsychological test scores for all baseline (2017) and two-year follow-up measures by groups. (A) Mini-Mental State Exam (MMSE-KC), (B) Word List Memory, (C) Word List Recall, (D) Word List Recognition, (E) Digit Span Forward, (F) Digit Span Backward, (E) Frontal Assessment Battery.

Table 2. Comparison of neuropsychological test and epigenetic age acceleration between groups over time

Categories	Group	Baseline M ± SD	Year 2 M ± SD	Mean difference	Z	p
Universal age acceleration	NCA	1.42 ± 5.72	2.10 ± 6.12	2.10 ± 6.12 0.68 ± 4.04		
	SCA	-2.07 ± 3.58	-1.45 ± 4.33	0.62 ± 2.38	-0.385	.724
IEAA	NCA	1.09 ± 5.35	2.83 ± 5.08	1.74 ± 3.10	0.406	607
	SCA	-2.73 ± 3.21	-1.19 ± 4.34	1.54 ± 2.31	-0.436	.687
EEAA	NCA	3.75 ± 4.30	-1.35 ± 4.13	-5.10 ± 2.83	2.420	024
	SCA	0.26 ± 3.75	-2.66 ± 3.51	-2.92 ± 2.22	-2.128	.034

Note: † Mann-Whitney U test; MMSE-KC, Mini-Mental State exam in the Korean version; IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration

Table 3. Partial correlation between the neuropsychological tests and epigenetic age acceleration controlling comorbidities.

Variables	1	2	3	4	5	6	7	8	9	10
 Universal Age Acceleration 	1.00	0.88**	0.00	-0.06	0.00	-0.16	0.15	0.22	-0.17	0.18
2. IEAA		1.00	-0.07	0.12	0.08	-0.03	0.25	0.03	-0.13	0.20
3. EEAA			1.00	-0.25	-0.02	0.03	0.04	-0.16	-0.52*	-0.22
4. MMSE-KC				1.00	-0.16	0.44*	0.42*	-0.16	-0.05	0.34
5. Word List Memory					1.00	0.40	-0.27	-0.40*	0.29	0.08
6. Word List Recall						1.00	0.48*	-0.33	0.06	0.15
7. Word List Recognition							1.00	-0.06	-0.22	0.17
8. Digit Span Forward								1.00	-0.12	0.13
9. Digit Span Backward									1.00	-0.23
10. FAB										1.00

Note: IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration; MMSE-KC, Mini-Mental State exam in the Korean version; FAB, frontal assessment battery; *, p<0.05; **, p<0.01

CONCLUSIONS

We found that EEAA was associated with cognitive aging. We suggest EEAA can be used as a biomarker for the early detection of cognitive decline in Korean community-dwelling older adults.